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Starting from one-dimensional dispersion relations (either fixed-transfer or partial-wave), information 
on the sign of absorptive part which follows from unitarity, and in some cases analyticity in the Mandelstam 
ellipse in the / plane and polynomial boundedness, we derive various consequences of physical interest, e.g., 
a high-energy lower bound on the forward scattering amplitude, the minimum fluctuation of the sign of the 
discontinuity across the left-hand cut in the partial-wave dispersion relations, etc. In the derivations, the 
positiveness of the absorptive part plays an essential role by allowing us to construct a Herglotz function 
which has a well-known asymptotic behavior. 

I. INTRODUCTION 

WE want to show in this paper that if a scattering 
amplitude satisfies a dispersion relation and if 

one has some information about the sign of the dis
continuity of this amplitude across its cuts, then the 
scattering amplitude under consideration cannot de
crease arbitrarily fast at infinity. Two main applications 
will be presented: 

(a) Forward dispersion relations, and with some sup
plementary assumptions fixed transfer dispersion rela
tions. Here the sign of the discontinuity is given by the 
unitarity condition. It turns out that in general the 
forward scattering amplitude cannot decrease faster 
than l/,y2(ln,y)1/2. However, under certain conditions 
involving only information on low energies, this can be 
improved and the scattering amplitude may be shown to 
decrease slower than l/(lm)1/2. By combination with 
analyticity assumptions with respect to the momentum 
transfer some weak lower bounds can be deduced for the 
absorptive part of the scattering amplitude itself. At 
the same time some results on the behavior of the scat
tering amplitude below threshold are derived by using 
crossing symmetry. 

(b) Partial-wave dispersion relations. Here only the 
sign of the discontinuity on the physical cut is known. 
Then, instead of getting information on the high-
energy behavior, we will impose this high-energy be
havior from unitarity together with the threshold be
havior and get, in this way, information about the left-
hand cut discontinuity. It will turn out that the 
minimum number of oscillations of the left-hand cut 
discontinuity increases as the angular momentum 
increases. 

The technique we shall use involves properties of 
Hergoltz functions and reduction of non-Herglotz 
functions to Herglotz functions. So we shall start with a 
few mathematical considerations. 

II. HERGLOTZ AND RELATED FUNCTIONS 

We remind that a Herglotz function1 H (z) is a function 
analytic in ImjsX) such that ImH(z)>Q for Im2>0. It 
admits the integral representation 

1 r+«>ImH(x)(l+zx) 
H(z) = A+Bz+- / dx, (1) 

Tj^o (1 + X2)(X— %) 

with B>0, ImH(x)>0, and the condition that 

r+0° ImH(x)dx 
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/ 1+x2 converges. (2) 

In addition, we have, since — 1/27 (2) is a Herglotz 
function, 

/

• f 0 0 

-00 

ImH(x) 

\H(x)\2(l+x2) 
dx convergent. (3) 

From representation (1) it is clear that in complex 
directions e<arg2<7r— e 

C/\z\<\H(z)\<C\z\. (4) 

However, for physical applications, we need to have a 
statement on the behavior of |#(#) | for x real, and 
Eqs. (2), (3), and (4) are insufficient in this respect. 

It is clear that along the real axis we should only 
expect behavior of the type (4) for some averaged 
function. This is most conveniently done by introducing 
a new function 

G(s)=- f B{z')dz'. 
Z J o 

(5) 

It is easy to see, by using a straight line as integration 
path for (5) that G(z) is again a Herglotz function. 

1 J. A. Shohat and J. D. Tamarkin, The Problem of Moments 
(American Mathematical Society, New York, 1943); cf., especially 
p. 23. 
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Hence we have, from (3) 

r*dx 

J A oo 

/*X 

/ ImH(x')dxf 

dxJo 

f 
Jo 

H(x')dxf 

convergent. (6) 

Now the origin of coordinates may certainly be chosen 
such that for x>0 ImH(x) is not identically zero. The 
quantity To* ImH(x')dx' is a nondecreasing function of 
x. Therefore, the convergence of (6) implies that 

r^dx 

J A oo [ 

1 
converges. 

\ f \H(x')\dx'~\ 

This provides us with the desired condition for # > # o > 0 

\H(x')\dx'>C(lnxy!2, (7) 
J A 

which implies 

lim sup x | H(x) | (lnx)1/2 == + oo . (8) 

The same statement holds, of course, for x —> — oo, 
with corresponding reversal of sign. 

Equations (7) and (8) can be interpreted as follows: 
Either ImH(x) decreases less fast than 1/x at infinity 
and then we do not learn anything new, or ImH(x) 
decreases very fast, but then Re#(x) cannot decrease 
arbitrarily fast. In particular, if we take ImH(x) to be 
zero outside a finite interval, we easily see, from repre
sentation (1), that KeH(x) behaves like 1/x at large 
distances. 

Next, we want to extend these considerations to func
tions which are not Herglotz functions but which are 
analytic in a twice-cut plane, with two cuts from — oo 
to A and from B to + oo, bounded in the entire plane 
(including the cuts) by a polynomial in | z \, real in the 
sense F(z) — F*(z*)y and such that on the cuts 
ImF(x+ie)>0. This has been done already by 
Symanzik2 for the case where only one cut is present. 

Let us start by showing that such a function has only 
a finite number of zeros in the twice-cut plane. Let 
i ^ l ^ l ^ for |z |>3o. F has pairs of complex zeros at 
say Zi and z? and real zeros Xj for A<Xj<B. If the 
number of these zeros is infinite, we can divide F by 

n(s-^(*-^)ii(s-*;), 

such that 2p+2q>N+2. The new function G obtained 
in this way decreases at least like l / | z | 2 at large dis
tances, has a positive discontinuity on both cuts, and 
can be represented by an unsubtracted dispersion 

2K. Symanzik, J. Math. Phys. 1, 249 (1960), Appendix B. 

relation. 
1 rAImG(x)dx 1 

<?(*) = - / — + -
x—z 

r°° ImG(x)dx 

JB oo—z T J B 

Clearly, G cannot decrease faster than 1/z in complex 
directions. Therefore, the total number of zeros is finite 
and certainly less or equal to iV+2. 

Then two cases occur: 
(i) The number of real zeros is even. Then we remove 

all the zeros: 

F(z) = U(z-zi)(z-z^)U(z-xJ)H(z). 

Then H(z) has a positive discontinuity across both cuts 
and no zeros. H can now easily be shown to be a Herglotz 
function, using, for instance, the method of Symanzik.2 

(ii) The number of real zeros is odd. Then we remove 
all complex zeros and all real zeros except one. If the 
new function G(z) obtained in this way is such that it 
has a positive derivative at the remaining zero, then 
again, it can be shown that it is a Herglotz function. 
If it has a negative derivative at Z—XR (remaining XR) 
we divide it by (z—XR)2, introducing in this way a pole 
at Z=XR with negative residue, i.e., a positive 5-function 
contribution to the discontinuity of the new function, 
which again will be shown to be a Herglotz function. 

We note that in all cases, for large \z\ we have 
| F(z) | c^ | z | v | H(z) |, where H(z) is a Herglotz function, 
and p>0. Therefore, conditions (7) and (8) apply as 
well to F(z) as to H(z): 

\F(x')\dxf>C{\nx)li\ 

\F(x')\dxf>C(\nx)li\ (9) 

and 
limsupj^i |F (# ) | ( ln |# | ) 1 ' 2 = + <*. (10) 

If, instead of having I m F ( # ) > 0 on the cuts, we allow 
for the possibility of isolated zeros, ImF(#)>0 , we can 
work with the averaged function 

i rz+A 

F(z) = — / F (*')&', 
A Jz 

which will hane a positive definite discontinuity on the 
cuts from — oo to A + A and from B—A to + oo. Then 
Eqs. (9) and (10) hold for F(z). I t follows immediately 
that Eqs. (9) and (10) hold for F(z) itself. 

The next step is to consider a function ^(z) with two 
cuts, from — oo to A and from B to + oo, with the same 
reality property, but whose discontinuity changes 
sign v times from x— — oo t o # = + oo. Then we can 
define a new function 

G(z) = U(z-zk)F(z), 
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which, on the two cuts has a positive or zero discon
tinuity. This function satisfies conditions (9) and (10) 
and hence we get 

j I^I^F^OI^'Xlnx)1/2, (11) 
J A 

l imsup |x | I ' + 1 ( ln |^ l ) 1 / 2 | ^ (x) |= + ^ . (12) 

Our mathematical apparatus is now ready and we can 
turn to physical applications. 

III. FIXED TRANSFER (IN PARTICULAR, FORWARD) 
DISPERSION RELATIONS 

We consider a scattering process 

A+B-+A+B (I) 

coupled by crossing to 

A+B-+A+B (II) 

for which one can write a forward dispersion relation. 
I t is further assumed that below the thresholds for both 
processes the absorptive part vanishes. More precisely, 

F(s,0) = PN(s)+- / 

+ - / , (13) 

7T J (MA+MB)2 u'N(uf~U) 

where s is the square of the c m . energy, and 

U=2MA2+2MB*-S. 

From unitarity, we have 

I m F i ( / , 0 ) > 0 I m F n « 0 ) > 0 
and then, in the variable s, F is analytic in a twice cut 
plane with a positive right-hand cut discontinuity and a 
negative left-hand cut discontinuity. We are, therefore, 
in the case v= 1 of last section, and we get 

f s'\F(s',0)\dsf>(\nsyi2 

J SO 

lim sup ^(ln?)1 '2\F(s,0) | = + co. (14) 
s—»oo 

The scattering amplitude, therefore, cannot decrease 
arbitrarily fast. In the special case where a power 
behavior is assumed 

\F(s,0)\~s°, 
we get 

a > - 2 . (15) 

We are perfectly aware of the fact that this result is 
very weak and that nobody would in any case believe 
that the scattering amplitude could decrease so fast. 
However, from a purely theoretical point of view this 
is better than nothing at all. 

If fixed transfer dispersion relations are assumed to 
hold also in the unphysical region 

0 < K V , 
with 

/ = - 2 & 2 ( l - c o s 0 ) , 

k c m . momentum 

cos0 c m . scattering angle, 

then in this region we still have 

ImFi(s' ,t)>0, T m F n («',*)> 0 , 

so that the result still holds. 
Now in the negative / region we do not know a priori 

the sign of ImF(s,t). However, we can obviously estab
lish a connection between the number of oscillations of 
ImF(s,t) for fixed t and the asymptotic behavior of 
ImF(s,t). Take, for instance, for simplicity, a self-
conjugate process (B^B). Then if F(s,t)^saWf(t) for 
s —•» + oo, we get 

a(t)>-2-2v(t), (16) 

where v is the number of oscillations of Im.F{s1t) from 
s=2jj,2—t/2 to + ° ° . v is by assumption finite, since 
ImF(s,t) has a definite sign in the asymptotic region. 
So the high-energy behavior is in part conditioned by 
information on the low-energy behavior in the same 
channel. Equation (16) is, of course, weaker than the 
Gribov condition3 a(t)> — 1 but it is established under 
much weaker assumptions. 

We want to present more detailed arguments to re
inforce our statement that the low-energy behavior of a 
scattering amplitude gives information on the high-
energy behavior. Let us return to the forward scattering 
amplitude A+B->A+B with B=B. Then it is ad
vantageous to use the symmetric variable 

Z=(S~MA2~MB
2)2 

which maps the upper half-plane of the 5 variable on the 
whole z plane with a single cut from z=Zo= (2MAMB)2 

to + °°. Assume now that the conditions for the validity 
of the Froissart bound are satisfied,4 namely the analy-
ticity of F(s,t) in t up to £=4,u2 and the boundedness of 
F(s)t) by polynomials in s for fixed t in the region of 
analyticity. 

Then we can write the scattering amplitude in a 
unique way, since F{sfi)<s\ri*s 

z rlmG(z'0)dzf 

F(s,0)^G(zfl) = A+- / — _ — — . , (17) 
TrJzo z'iz'-z) 

This formula shows clearly that G(z,0) itself is a Herglotz 
function. From this follows that for real z<Zo all the 
derivatives of G with respect to z are positive. Hence, 

3 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239 
(1962). See also, P. G. O. Freund and R. Oehme, Phys. Rev. 129, 
2361 (1963). 

4 A. Martin, Lecture Notes of the Scottish Universities Summer 
School, 1963 (to be published). 
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if G(*o,0) is negative [F({MA+MB)\ 0 ) < 0 ] , G(zfl) is 
negative for Z<ZQ. Hence, the function G(zfi)/(z—Z\), 
with 0i<2o is again a Herglotz function. Hence, we get 

and 

or 

J A 

\G(x>fi) 
-dxf>{\nx)li\ 

'A X 

lim sup(ln#)1/21G(xfi) | = + °o , 

Km sup|F(s,0) | (log*)1 '2- + oo. 
(18) 

So the knowledge that G(zofi) is negative (in other 
terms the knowledge that the zero-energy S-wave 
scattering length is negative), is sufficient to allow us to 
gain two powers of s in the high-energy lower bound of 
|F(*,0) | . 

If the zero-energy scattering length is positive, it is 
still possible to get some further information. Let us 
again change variable and use 

then 
y=z-z*= (S-~MA2-MB

2)2--4MA2MB2; 

y rImB{y'fi)dy' y r lmH{y'\))dy' 
F(s,0) = G(z,0) = H(y:0)^A'+~ / . (19) 

The subtraction can be made at y=Q because at 
threshold ImH(yfi)^\/y. Then for y<0 we get, given 
C arbitrary, positive 

H(y,0)<H(0fi)+- [ 

and, in particular, 

y fcImH(y',0)dy' 

y'{y'-y) 

1 r°lmH(y,0W 
H ( - 0 0 , 0 X ^ ( 0 , 0 ) — / . 

T J o y 

(20) 

So, if we can find a number C such that the right-hand 
side of (20) is negative, this tells us that in — oo <y<0 
H(y,0) has one zero, with positive slope, then 
H(yfi)/(y~yo) is again a Herglotz function, and we are 
back to result (18), i.e., an average decrease of |F(s,0) | 
not faster than (ln^)~1/2. This necessitates only the 
knowledge of the zero-energy scattering length and of 
the total cross section in the low-energy region. For 
instance, for equal masses ju, scattering length do we get 
the general condition for the validity of (18): 

1 rc 

A*ao—— / 
8 W v 

c at(s)(s~2fx2)ds 

t» ( s - V ) 1 ^ 1 ' 2 
-<0. (21) 

We expect that if the process under consideration has 
a resonance, the inequality (21) will be satisfied by 
taking C above the resonance energy. So, if (21) holds, 
the forward scattering amplitude lies between the 
asymptotic limits (h%s)~1/2 and s ln2s. Whether the gap 
between these two extreme cases is large or not is a 
matter of taste and of scale. If we just count the powers 
of s we see that the interval is not so big. 

Let us first mention now two theoretical implications 

of (14) and/or (18). I t has been shown5-6 that if the 
scattering amplitude is larger than s~N in the forward 
direction: 

(i) The elastic cross section <re satisfies 

<r«>(cr*)2(lns)-2. 

(ii) The large angle scattering amplitude cannot 
be uniformly less than exp(—Cs1/2ln,y) if Mandelstam 
representation holds. I t is clear that now the assumption 
about the forward scattering amplitude is no longer 
necessary. 

We want now to show that when one supplements 
(14) and (18) by analyticity assumptions in / [F(s,t) 
analytic in t up to /=4/i2 and bounded by a polynomial 
in s ] one can deduce lower bounds on ImF(^,0) from 
the lower bounds on |F(s ,0) | . Indeed, these analyticity 
assumptions imply that only Cs112 Ins partial waves 
contribute effectively to the scattering amplitude. The 
error committed by neglecting higher waves may be 
shown to be less than s~N, where N can be made very 
large by taking C big enough. Hence using Schwarz 
inequality together with the unitarity condition for 
partial waves, l > I m / j > \fi\2, we have: 

F(s,Q)-0 a cl/2 Cs112 

<\ 
C* ln« 

E (21+1) ft(s) 
o 

<C*sh?s[ — )(Z(2l+l)\Ms)\*) 

<C2—shAIm/^O). 
k 

Hence if |F(^,0) | is larger than (ln.y)"""1/2r"2, we get 

ImF(5,0)>(lm)~^~6 . (22) 

If |JF(s,0)| is larger than (ln^)""1/2, we get 

ImF(sfl)>(lns)~*s-K (23) 

IV. THE SCATTERING AMPLITUDE 
BELOW THRESHOLD 

We have seen that the zero transfer scattering ampli
tude expressed as a function of z= (s— 2/z2)2 (in the equal 
masses case MA — MB—V), is a Herglotz function. How
ever, in a previous paper7 we have shown that for any 
fixed / > 0 inside the analyticity domain in t, the same 
conclusion can be drawn. Here, specifically, we shall 
treat the case of T V 0 scattering. Notice that the coupling 
of the scattering process with the reaction 7r°7r° —> T+T~~ 
does not affect our conclusions, because it does not affect 
the positiveness of ImF(s,0) for s>4ju2. 

So, if we define z== (.?—-2/x2-W/2)2 we have, according 

5 A. Martin, Nuovo Cimento 29, 993 (1963). 
6 F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964). 
7 Y. S. Jin and A. Martin, Phys. Rev. 135, B1375 (1964). 
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toRef. 7: 

7T J ei 

% p ImG(zf,t)dzf 

nJgo(t) z'iz'—z) 
(24) 

in 0 < * < V , with z0(t)=(2fJ
2+t/2)2, ImG(z',t)>0. 

Hence for z<Zo(t) we have 

(d/dz)nG(z,t)>0 

and changing variables; for 0<^<4/x2 

2 M 2 ~ / / 2 < ^ < 4 M 2 

'd> (-)VM>o, for fixed t. (25) 

Since we have complete symmetry of the amplitude in 
all three channels, we can interchange variables and in 
this way get information on the scattering amplitude 
in the triangle s<4/z2, /<4^2, ^<4/x2. First we show that 
the symmetry point 

S— t — U = 4:fJ2/3 

is an absolute minimum of F(s,t,u) at least inside the 
triangle. Indeed inside the triangle, two out of the three 
variables s, t, u are positive. Let s and t be positive. If 
s>t>Uj let us distinguish two cases: 

(i) />4/x2/3, which implies s>^/Z 

F(sit,u) = F(s,t,u)-F[s, 4M
2/3, ( V / 3 ) - / ] 

+ F [ 5 , 4 M
2 / 3 , ( 8 M / 3 ) - ^ ] - F ( 4 M

2 / 3 , 4 M
2 / 3 , 4 M 2 / 3 ) 

+F(4M 2 / 3 ,4 M
2 / 3 ,4 M

2 / 3 ) . 

Hence, F ( ^ , ^ ) > F ( 4 M 2 / 3 , 4 M
2 / 3 , 4 M V 3 ) . 

(ii) £<4ju2/3, which implies ^<4^2/3 

FisJ^FisJri-FliW/V-t, t, (4M
2/3)] 

+F[(8M
2/3)-*, t, 4M 2 / 3 ] -^ (4 M

2 / 3 ,4M 2 / 3 ,4 M
2 / 3 ) 

+F(4M
2 /W/3,4M

2 /3) . 
In both cases we get 

F(s,t,u) >F(4M2 /3,4M
2 /3,4 JU

2 /3) . (26) 

This is true in all the triangle s<4=fj?, t<4jj?, U<A/JL2 by 
permutations over s, t, and u. We believe that this is a 
result of some use, since in many approximate schemes 
the threshold amplitude, i.e., the s-wave scattering 
length, is taken to be equal to the value of the scattering 
amplitude at the symmetry point. Inequality (26) 
indicates in which direction the error goes. 

It is also easy to see that inside the triangle F increases 
along any straight line originating at the symmetry 
point, by the same kind of argument. 

It is slightly more delicate to show that if we define 
the 5-wave amplitude as 

2 r° 
0o(*)= / F(syt}4:fjL2-s-t)dt; (27) 

then for 
2JU2<*<4M2 

d<t>Q(s)/ds>0. (28) 

Owing to the symmetry, <£0(s) may be rewritten as 

/•1/2 

Then 
MM Cll2//dF\ /dF\ > 

}dx. 

/•1/2 

= 2 / FZs, x(4fx2-~s), (4fj
2-s)(l-x)']dx. 

Jo 

Jo \\ds/t \dtJJ 

d4>o(s) 

We have 

'dF 

\dsJt 

( - ) 
\dt/s 

for t>0 and s> 2/x2>2/x2-1/2, 

<0 for 5>0and/<2/x 2 -V2, 

which proves (28). We think that (28) might have some 
usefulness in removing part of the ambiguity in the 
solutions of N/D equations for the s wave. 

From (27), it also follows almost obviously 

<t>0(s)<F(s, 0, 4,u2-<y), 0<s<^2, 

0o(V) = /W,O,O). 
(29) 

Inequality (29) shows for instance that a strong Z)-wave 
resonance, which will enhance the imaginary part of the 
forward scattering amplitude and hence induce through 
relation (17) or (19) a strong energy dependence of 
F(sfi) in 0<s<4/x2, will at the same time induce a still 
stronger energy dependence of the S wave in 0<s<4ju2 

and hence in all the low-energy region. 

V. THE LEFT-HAND CUT IN PARTIAL-WAVE 
DISPERSION RELATIONS 

We want now to apply the considerations of Sec. II 
to a partial-wave amplitude, analytic in a twice-cut 
plane, with cuts 

— 00 —» — A 4jU2 —» + 00 , 

(For simplicity, we take the equal mass case.) The par
tial-wave scattering amplitude, normalized as 

<t>i (s) = Ls/(s~ 4/x2)]1 V smdt(s), (30) 

where dt is real in the elastic region, is assumed to be 
bounded by a polynomial. We know from general 
unitarity condition that the right-hand cut discontinuity 
is positive or zero. The sign of the left-hand cut dis
continuity is unknown. Let v$ be the number of oscilla
tions of the left-hand cut. What we want to do is to 
get some information on v$. 

We shall now set the requirement that <t>i(s) has the 
correct threshold behavior. Hence, 

* I ( * ) = ( * - V ) V ' J ( * ) , (3D 

where ^j(s) has a finite limit for s—» 4ju2. \f/i(s) is again 

file:///dtJJ
file:///dsJt
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a polynomial bounded function with a discontinuity 
which changes sign v$ times. I t is clear that 

v$—Vf for even I 
and 

IP0—Jty|=l ioxoddl. 

More precisely, in the odd I case 

if Im<j>{-A-y+U)>0 

if Im<t>(-A-y+ie)<0 

Now we apply inequality (12) to ipi(s) and we get 

lim sup s'i+tQnsyvsr1 \4>i(s)\= + <» . (32) 
8—>00 

However, we know from unitarity that |<foO>)| < l + e 
for S>SQ. Hence, condition (32) can only be satisfied 
if we have 

v++l-l>0. (33) 

Condition (33) can be slightly improved by a more 
careful use of unitarity 

Im^>zW>C(^-V)A]1/2|0zWI2, 

on the right-hand cut. Hence, asymptotically, 

Im*i(*)>5-*|*,(*) |2 . 

Now following the procedure of Sec. I I , we multiply 
\f/i by a polynomial of degree v$ to obtain a function 
Xi(s) such that on the right cut, for large s 

ImpXzO?)>^-'|Xj(,y)|2. 

Next, we replace Xt(s) by an averaged function 

fS+A 

xl(s)=— I x^s'W. 

For v1/f=l—l) which is the lower limit predicted by (33); 
it gives 

ds 

1 rs~ 

Then it is not difficult to show, using Schwarz inequality, 
that 

ImXl(s)>sv*-l\Xl(s)\2. 

Then the zeros of Xt(s) are factored out in order to get a 
Herglotz function Hi(s). Clearly, according to the study 
made in Sec. I I , Hi(s) will still satisfy for large s 

ImHl(s)>sv+-l\Hl(s)\\ 

At this point we use Eq. (6) directly and Schwartz 
inequality 

' ds J A 

Hinds' 

r00 ds 
- > C / — 2 Jv5 s 

[ s'l-v*ds' 
J A 

/ 

The right-hand side of this equation should converge. 

4M
2 s In? 

which is obviously divergent. Hence, we must replace 
(33) by 

v+>l. (34) 

I t is easy, according to the rules indicated above, to 
make the corresponding statement for the discontinuity 
of the original amplitude <[>i(s). In particular, if the near 
left-hand cut discontinuity is given by the projection of 
the Zth wave of a one-particle pole in the transfer 
channel, we get 

v<f> = Vf for even /; hence, v<t> > / 

v* = v*+1 for odd /; hence, v$ > 1+1, 

so that the P-wave left-hand cut has at least two 
changes of sign (counted by comparison to the right-
hand cut). 

We wish to make two comments about this result: 
First, it is clear that the structure of the left-hand cut 
becomes increasingly complicated as the angular 
momentum becomes large. Second, the consistency re
quirements we have obtained, which are independent 
of the number of subtractions, should be kept in mind 
when one deals with consistency problems, in particular, 
"bootstraps." Should the left-hand cut not satisfy our 
conditions, then either the threshold behavior or uni
tarity at high energy are mistreated. 

VI. CONCLUDING REMARKS 

We think that the few examples we have given show 
how powerful the tool of Herglotz functions is in dis
persion theory and how important are the positivity 
requirements due to unitarity. This was already felt 
in a previous paper7 where the number of subtractions 
of fixed transfer dispersions was limited in this way. 

One may, of course, feel disappointed that these 
general requirements on scattering amplitude lead to 
rather weak conditions, most of which everybody was 
prepared to believe without proof. However, it seems to 
us to be a necessary task to explore bit-by-bit the 
rigorous consequences of analyticity, unitarity, and 
crossing. Who knows if some day one will not be able to 
reassemble the pieces of the puzzle? 
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